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Workshop on Symbolic Computation and Supz:-c=puters 2

Preface

A

 This report is the record of a two-day workshop keld at Purdue University on high-

performance symbolic computation. The titlcj\'Symbolic computation and supercomput-

[

ers” reflects the interests of the participants, many of whom are practitioners of symbolic
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computing on supercomputer-class machines. The goal of the workshop was to assess the

current state of affaire, and identify key issues requiring attention. The report is pri-

marily a compeadium of the positions taken, recommendations made, and questions :
!
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The participants werz: — T Pl 2 o ?e ol .

John Aldag, Cray Research

Wayne Anderson, Los Alamos Laboratory

Dennis Arnon, Purdue University

Bobby Caviness, University cf Delaware

Jagdish Chandra, Army Rescarch Office

Elizabeth Cuthill, David Taylor Naval Ship R&D Centcr
Alvin Despain, University of California, Berkeley
Robert Douglass, Los Alamos Laboratory

John Fitch, University of Bath, England

Daniel Fricdman, Indiana University

.- . e . A e,

¢« cEmamm ag =

Richard Gabriel, Stanford University :
Jeffrey Greif, Inference Corporation T
Martin Griss, Hewlett-Packard Laboratories I
Malcolm Harriscn, New York University f
Christopher Haynes, Indiana University 3
Robert Kessler, University of Utah j
Wayne Matson, Symbolics, Inc. .

Denald Oxley, Texas [nstruments

Jokn Rice, Purdue University

Joan Smit, Goodyear Aerospace Corporation
William Stockwell, Control Data Corporation
Pzul Wang, Kent State University
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Workshop or Symbolic Compuiation and Supercomputers 3

1. INTRODUCTION.

This report is the record of z two-day workshop held a2t Purdue University on kigh per-
formance symbolic computation. Twenty-two persons, representing a cross-section of
universities and industry, participated in two days of discussions, We chose the title
"Symbolic computation and supercomputers” to emphasize the urgency of radical improve-
ments to current symbolic computation performance and availability levels. In the report
we attempt to convey the specific and detailed points made by individual participants, 2s
diverse and even contradictory as these somctimes are. Our lack of consensus on many

issues is testimony to the need for further clarification and study in this area.

There can be no dcubt that high performance symbolic computation is needed today
and wil] be increasingly neseded in the future. Symbolic computation is a carnerstone of
applied artificial intelligence, ¢.g. expert systems. DARPA’s Strategic Computiag initia-
tive [Agc83] assigns symbolic computation a prominent role, ard says of it;

current applications in areas such as vision now require about three orders of mag-

nitude more processing than is now available. As future algorithms and applica-

tions are developed, even more computing power will be necessary. (p. 44)
Symbelic computation is a large component of the “knowledge information processing” of

the Fifth Generation project in Japan [Mot82], as is attention to superscale processors,

The following are some concrete examples of the need for higher performance; the
list could be lengthened indefinitely. Speech systems that speak too slowly need speeding
up. A program of Moravec [Mor35] guides a robot across a room contzining obstacles;
currently 15 minutes of computation are required after each step to evaluate what the
robot’s vision system now sees, and decide in which direction it should take its next step.
NASA plans the computation of 30,000 spherical harmonics for the gravity field of the
earth. Symbolic computations performed by sophisticated mail programs, e.g. parsing

source addresscs, sorting messages into conversations, can be unacceptably slow. There
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Workshop on Symbolic Computation and Supercomputers 4

are many potential applications of combined numerical and symbolic computation waiting
to be pursued, in which the symbolic computation is the dominant cost (cf. Section 33
below). For example, ;anc might generate the equations of motion for joints of robot
arms symbolically, then solve them cumerically. Current supercomputers already make
the numerical comporent much less costly than formerly; a similar improvement in the

symbolic componeat is both needed and thought to be possible.

In recent years, 2 number of supercomputers, e.g. CYBER-205, CRAY-1, Denclcor
HEP, and Goodyear MPP (Massively Parallel Processor), bave beer commercially pro-
duced. In addition, design and con:truction are at an advanced stage om such machines
as the NYU Ultracomputer, the Stanford University/Livermore Laboratory S-1, and the
Columbia University NON-VON. For numerical problems, they have given dramatic,
often order of magnitude, performance improvements. A symbolic computation environ-
ment that delivers order of magnitude performance improvements over current levels
might be termed a "symbolic supercomputer”. The question is - how to build oae? There
is general agreement that very increased use of parallelism is tasic. However, while
today’s supercomputers can deliver substantial. specedups on many numerical problems,
and may perform well as symbolic processors (e.g. with a LISP implementation), they are
not “symbolic supercomputers”. Their design has been driven by the requirements of vec-

tor processing for large-scale numerical computatica.

It is the goal of this report to ccllect ideas and information pertinent to (1) the
design of a "symbolic supercom.puter”, and (2) the more efiective usc of cxisting super-
computers for symbolic computation. At least one participant did not support these
objectives; he belicved that cost effcctiveness of machines is the key issue, i.e. will
supcrcomputers ($1-10M) or powerful personal computers ($1-30K) have the largest posi-

tive impact on society?
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"Symbeolic computaticp" means different things to different people; we devote Sce- ]
tion 2 to its various aspects and key features. We feel there is an urgent nced for evolu- i
tionary change io general-purpose programming languages for symbclic computation, as
we detail in Section 3. Section 4 tzkes up memiory managemeni, 2 crucial issue which will
become more complex and no less important as parallel systems evclve. The topic of Sec- i
tion S, system organization, may be introduced by a quote from the DARPA report
([Age83], p. 45): "The symbelic processors of the future may well be z collection of speciai

components which are interconnected via a gereral host computer or by high spzed net-

> T

works”. Some of us agree 2ad some do not. Section 6 is concerned with the evaluation

of existing and new symbaolic computation systems, made increasingly necessary by their ]

rroliferatien; we make specific methodological recommendations.
We remark that 2t least one participant [zt that we should not spend time arguing
architectures or programmiag languages, but should characterize the specific algorithes

we would like speed up, and find out how to do so.

2. THE INATURE OF SYMBOLIC COMPUTATION.

[t 1s uzlikely that two persons will agree on a definition of symbolic computation. We list
& fzw possibilities.

(1) DARPA ([Agc83], p. 44) s2ys “Symbolic processing decls with non-numeric cljects,
relationships between these obiscts, arnd the ability to infer or deduce new information
with the 2id of programs which 'reason’”

(2) Kekr {Kah82] says that symbolic computing zrises when we have "objects” (eg. pro-
grams, programming languages, circuits) that we nced to rezson about. The objscts are
represented as “structured collections of formulae in seme well-defned algebraic formel-
1sm”. Thec “computer tools” needed to reason abeut the objects are symbolic computation

end thcorem-proving.
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Workshop on Symbolic Computation and Supercomputers 6

(3) Buchberger [Buc83] defines symbolic computation as: "all aspects of the algorithmic
treatment of symbolic ... objects, where symbolic objects include terms, formulae, pro-

grams, geometrical objects ..".

(4) One participant’s definition: symbolic computation is characterized by one or more of
(A) manipulation of several types of entities (symbols, numbers, szts expressions, lists,
rules), (B) application of the same high or low level function to diverse structured
objects, functional aggregates of such expressions, and recursive descent through expres-
sions performing operations of this type, (C) (in principle) unbounded memory use in
simplification or cvaluation of subparts of a computation, (D) searches throurh
(moderately sized) databases in which the matching operation may be complicated, (E)
diffcrent instructions applied to objects of different type or different objects of the same
type (F) random memory references via poicnters, (G) applicaticn of certzin deterministic
mathematical processing, ¢.g arbitrary precision integer zrithmetic, or greatest common

divisor calculation.

(5) Another participant’s definition: Symbolic computation deals with applications that
may involve heuristic search, uses comparison of symbols as a basic cperation (instead of
floaticg point arithmetiz, which is numerical computing, or integer arithmetic, which is
signal processing) dealing with certain typical data structures (e.g. semantic nets, frames,
productioes, etc) involving pattern matching and is very ruo time dynamic in storags
requirements and processing requirements.

(5) Oae participant observed that the equzl presence of algorithms, and heuristic scarch
and pattern matching, seemed to be a characteristic feature of symbelic computation.
Arnotber participant observed that not so long ago, symbolic computation meant chiefly

svomboeiic mathematical computation, and this may still be one cf the best paradigms.
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Workshop on Symbelic Computation and Supercomputers 7

We think a good working definition of symbolic computation is: computation involv-
ing data and control structures which are irregular and unpredictable. In other words,
one expects to deal with objects of diverse types. This means, among other things, that if
onc seeks parallelism, the computations which are to proceed in parallel may be quite
different. Pointers to the data structures, rather than the structures themselves, are d

manipulated. From this arise many of the memory considerations discussed in Section 4.

For illustration, we give a list of fundamental examples of symbolic computation.

Some of the items are from [Age83] and [Buc83].

.. T

(1) Scarching.
(2) <Comparing complex structures (pattern matching).
(3} Pursing, parscr generators, compilers.

(4) Unrnifcaticn algorithms and solution of term equations.

(5) Evaluation algorithms for logic programming, rewrite rule programming, and func-
tional programming.

(6) Acutomated theorem proving, in general and in special theories.

(7) Manipulation of abstract data type specifications.

. T

(8) Critical-pair/completion algorithms.
(9) Software prototyping, i.c. rapid generation of possibly inefficient programs from
specifications.

(1t, Computer-aided program verification, program transformaticz, symbolic execution,
data flow analysis, and program optimization.

Y. JR R

(11) Symbolic mathematical computation (computer algebra).

(12) Computer-aided instruction. g

(13) Robot control. g

(14) Vision’scasory imitation. K
»
3

3. LANGUAGES.

We zre in agrecment that there is an urgent need for evoluticnary change in generai-
purpose programming languages for symbolic ccmputation. Specifically, we need: (1)
language features that provide the user with the necded level of expression for probiem

solving (cg. data abstraction, functional abstraction, contrc!l zbstraction). (2) language
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Workshop on Symbolic Computation and Superccmputers 8

fcatures that support efficient implementation on parall:l (or otker) machines. eg. protec-
tion of name space or elimination of side effects or cdr-coding or tricky storage allocation

schemes. There was little agreement on the form this change should take.

3.1. LISP.

The following are statements by individual participants, which do not neccessarily have
group consensus.

(1) LISP was a good thing, but the time is coming to leave it E2hind. A massiv s
carrying it forward. It's not suitable for the parallel prezeccing environ .ni. It is
inherently sequential. This workshop should be careful not to zllow LISP to be ~  en-
tral topic.

(2) Anti-LISP talk is unjustified. There are man-ceaturies of development already behind
LISP; can't throw ihat away. LISP has many uses, and there are many existing applica-
tions. LISP does support parzllelism, and doesn't ignore data structures. LISP is viable
on supercomputers, but new implementations are needed. Tle use of vector processing
capabilitics in LISP implementations is a rich field awaiting erzloration.

(3) The implementation of full LISP with closures is desirable; the question is whether
onc can get the semantics of decp binding without paying for it, ie. make up for the loss
of the cxpressibility permitted by FUNARG (see ¢.g. [Pad®3]). Lexical scope rules are
also important.

(4) Tke convergence of LICP? and PROLOG is a very promising future direction. Cio-

sures and continuations provide a way of implementing the convergence.

.2. Symbolic computation languages.
We will use the generic term “symbolic computation (SC) languages”, except where scme
particular language is in questica. There scemed to be agreement that symbolic
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Workshop oa Symbolic Computation and Supercomputers 9
computation languages can be classified as follows: (examples given in parentheses):

Furnctional Languages (LISP, Scheme - both with and without side-effects).
Declarative languages (PROLOG and variants)

Obicct-oriented languages (Flavors, Smalitalk, Scheme)

Table manipulation languages (Database Query Languages).

Dcmain specific languages (IDEAL, ATL)

Rule-based languages (OPS-5, EMYCIN)

String-processing langrages (Snobol)

Set manipulation languages (SETL)

DARPA doesn’t break up the world this way; rather it distinguishes languages 2s bzing

The following are statements of individual participants (which we reiterate do not neces-
sarily have group conseasus).

T

it may be desireble to have FRAGMA's in languages so that the programmer can

advise the compiler of explicit or implicit parallelism, or other pertinent information.

(2) Programmers may want the facilities from several of the above categories in the same
preblem. In other worils, programmers may want to combine several of the known
abstraction facilities. It would be desirable for future symbolic computation languages to
~eovot this, bearing in mind the risks of complicating implementation and ending up with
an overly complex, hard-to-use, language. Some efforts have already been made along

these lines, e.g. POPLOG, LOGLISP, LISP in PROLOG.

- - . "

Thore ere fundamental abstractions that "must” be made availeble, specifically "firet

sloes” functions and centinuetions [Frir)].

0
e

(4 Languzage constructs [or exploiting parallelism have not been extensively utilized to

catz by the svmbolic computation community. Initial experiments by Gabriel aad Fitch,
cmong others, look promising and show some intercsting performance characteristics.

Frozram transformation techniques are used by FORTRAN program restructuress to

¢oiect poraliclism in scientifc applicaticns. The languages used ia symbelic computation

Al Salesase
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SIMD ARCHITECTURE

"Single Instruction Multiple Data” parallel architecture.

SYSTOLIC ARRAY
A parallel architecture consisting of an array of processors with 2

uniform protocol for passing data.
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Workshep oa Symbolic Computation and Supcrcomputers 22

c(x,y,z,t) =

step 2: define f(x,yz,t) = (a+b-c)/{i+a*d)

aa JORN

step 3: Display those values in x,y,z and ¢ where f is infinite.

1L’ s

These may be curves, points or surfaces.
step 4: Generate Taylor’s series expansioas with 2 terms for

L't along all the loc’ where £ is infinite. ]

o

step 5 Compute a complex formula depending on f at a fine grid ]
of points in x-y-2-t space. -

1
Y

7. GLOSSARY. :
9

CDR-CODING 2
A technique for eliminating unnecessary peinters in LISP lists. _3
"

GARBAGE COLLECTION 3
The cutomatic reclamation of memory which is nct currently in use, o
. : R
without explicit dereferencing by the programmer being required. .1'
]

]

LISP o
A widely-used programming language for symbolic computation. d
o

MIMD ARCHITECTURE ]
"\I

"Multiple Instruction Multipie Data” parallel architecture. 5
L |

PROLOG

A widely-used programming language for symbolic computatiosn.

)’l

e R o
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Workshop on Symbolic Computation and Supzrcomputers 21

(3) The Reduce test file [Hea84].

(4) Macsyma test ﬁlcf

(5) Theorem proving examples

(6) PROLOG benchmarks in David Warren’s thesis (available from Frank Kuo, SRI)

(7) OPS-5 rule sets

(8) Compilation timings (e.g. time LISP compiler compiling the Reduce system, the
blocks world)

(9) The SIGSAM problems (see the ACM SIGSAM Bulletias).

The following are statements of individual participants.

(1) Can we identify problems that need just a factor of two to five improvement to
become feasible? Knowledge of such problems can belp drive near-term development.
Some examples: getting expert systems to work in real time (e.g. DARPA’s battleficld
manager must run at five times real time), increasing the subsets of English which ratural

language systems can handle, 2and VLSI design.

(2) Good benchmarks provide a measure of performance thot allows a comparison
nstween competing architectures. Benchmarks should be general in nature ie. DAIS min

or whotstones. They should never be the only measure of performzzce.

(% Cuse studies of four to Sve “standard” symbolic problems, using state of the art

fLardware, are needed.

(4. A beachmark for symbolic computing:

step 1: Write down 3 functions of variables x,yz,t

a(x,v.z,t) = ordinary but lengthy mathematical expression

b(x.,y.2.°) =
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Workshop on Symbolic Computation and Supzrec—puters 20

(19) A typical computation application is scarching and pattcra matching. A massively
parallel computer such as the Goodycar MPP would be very useful in speeding up these
basic operations. This implies that value-based systems will be 2ble to select a rule in
parallel. There are some problems in doing this such as how large should the "associztive”

content-addressable memory be.

(20) In symbolic mathematics systems, one could picture the following basic operations
being hardware based to increase performance:

integer arithmetic

indefinite precision floating point arithmetic

rational number arithmetic

icteger greatest common divisor
integer FFT with dynamic root of unity in a finite field

(21) Tags are artifacts of current iciplementations 2nd pot intiicsic to SC langrages - or
even to efficient implementations of them. The functicna[ityic.’ such things asl full/empty
bits and dynamic typing are being provided in other systems by cther mechanisms.

(22) One participant’s opinion: a 680C0 plus infinite speed Eozting point arithmetic will

not produce much power.

6. PERFORMANCE EVALUATION.

The state of this importast arca is not advanced. We specifically request that funding
agoacics support benchmarking studies, for example, memory usege statistics, or the

behavior of a CONS cell during its lifetime.

The following is the best list we could construct of current benchmark programs for

symbolic computation:
(1) R.Gabriel LISP benchmarks

(2) M. Griss LISP benchmarks
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(16) Can we do combined symbolic/numeric work best in LISP on a current commercial
| supercomputer, or with a LISP machine and such a supercomputer, or with a 68000 and a

supercomputer, or with a 68000 and a fast floatng point board?

(17) There are substantial classes of important problems which require enormous symbolic
computational power. The main characteristics of these problems are that they deal with
data structures and contrcl structures which are unpredictable, and are thus not amen-
able to implementation on vector or array machines. The main source of computational
power for these problems must be parallelism, preferably with an architecture that
imposes as few constraints on the programmer as possible. The most flexible of these
architectures has been cealled a 'paracomputer’ by Schwartz. This architecture is also
well-suited to those numericai prcblems which lack the structure appropriate for pipe-
lined or vector implementation, so machines of this type are likely to be available in the
near future. The central question which arises, therefore, is that of the amount of paral-
' lelism inherent in symbolic computations. At the present time there is little data on this,
though most participants (at the workshop) felt that many problems could yield to paral-
lel algorithms. However, there has been relatively little work done in this area; most

programming and algorithm design has been oriented towards serial architectures,

(18) There are arguments for both sides of the question of "personal supercomputer” vs
"backend supercomputer”. If the user has a desktop supercomputer with a decent
eavironment, would he/she be more productive? Quite possibly! On the other hand, back-
cnd machines will always have their place. Massive rule based erpert systems to solve
large problems will not go away. Oune possible arrangement would be to have a powerful
desktop machine for software development, and a backend machine for really tough
problems. One could also picture hardware assistance in compiler work, since massive
amounts of pattern ma:tching are being done. A hardware pattern matcher would be

great.
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parallelism. Alternatives ir_xcludc data flow, use of pure functional programming, or intel-
ligent analysis of existing (LISP) code to isclate independent (no side effect overlapping)
functions or sections of code.

(It should be noted that at least one participant strongly disagreced with the
assertion that SIMD is less useful than MIMD for symbolic computation, and in fact the
suggestion was made that SIMD machines could be competitive with other architectures

for such tasks as processing of rule-bascd languages).

(13) While pure functional has many mathematical attractions, the commonest implemen-
tation by combinators, and using normal order reduction is strongly non-parallel. Some
user action is required for multiple processor exploitation (sce the work of Warren Bur-
ton at University of Cclcozdo). The intelligent compiler approach deserves serious con-

sideration.

(14) Symbolic computatic=s can contain a high degree of parallelism at the high-level
(conceptual, functional, #!~orithmic), but much less at the instruction or operand level. in
what way can they be parfcrmed on, or with the assistance c¢f existing and future super-
computers? To use a vectcr computer or pipelined computer (either on instructions or
data) scems to be of use caly on specialized subproblems most!y connected with numeri-

cal processing or table searching, ete.

(15) What sorts of parz!lel architectures are useful? Single izctruction machines are not

appropriate for the generzi computation. MIMD machines, prebobly with shared memory,

secm to be the most approzriate architectures. They can be programmed at a high level,

vet take advantage of porillelism. It would seem best to have z system that allowed the

generation of several prozosses each implementing a self-contzined subtask, appropriately

s mmmaN

scheduled. Existing vec'c- machines might best be used as specialized co-processors for

floating point manipulaticz, or particular algorithms, as might SIMD machines.
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(D) Hardware or generic arithmetic? The latter would tzke the form of branch
rediction-style hardware for numeric and maybe vector/array izstructions.

(E) The Symbolics 3660‘5 ephemeral object space may be a biz win to help locality and

garbage collection. There should be hardware support for it.

(F) Process creation (i.c. given the code and local store that constitute a closure, create a

task and schedule it) has to be fast.

(G) Pipeline turbulence has to be handled. Either shorter pipes, or a Denelcor HEP-like

virtual multi-processor, could be useful for parallel LISP. The latter solves turbulence and

makes for a good machine for certain LISP constructs, e.g. QLAKMBDA.

(H) Parallel languages have to encourage people to program ia them effectively. They
must be high-level enough so that obvious algorithms/programs are casy to write.

(T) It is not clear what role is to be played by SIMD machines. They are clearly advanta-

geous in certain situations, e¢.g. as filtering devices on large szz2rches. In such situatioas,

one can narrow down the choices, but not make the final ones.

(3) LISP could be “adjusted” into a “mediumly-typed” language so that more inter-

procedural things could be done.

(11) We need to characterize the type of parallelism in symbolic programe/algorithms/

piications in terms of granularity, volume and topology of communication required

&5
tciween concurrent cntities. For example, there are indicaticas that unification might
give on the order of ten parallel scarch paths of medium granularity. Also, Gabriel
reported a study (at the workshop) that showed 100-150 fold parailelism on a MYCIN-
like system.

(12) In some pattern matching activity use can be made of SD.ID style machines, but in
general to achieve the necessary high performance MIMD is recuired. This carries with it
probiems. Either we must rely on the user to write explicit language level constrictions

’

to unlock the power, or we must rely on some ‘compilaticn’ to determine available
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(5) Are systolic arrays useful? (example: integer greatest common divisor chip [Dav]).
(6) How does the need to support multiple users impact a system d=sign?

(7) Personal supercomputers vs. shared backend "crunchers”? Do we run our screen edi-
tor on a supcrcomputer-class machine, or on a smaller support system? Is the right
environment a LISP machine networked to a massive symbolic processor in the back-

ground?

8) Can symbolic computation languages take advantage of pinelines and vector opera-
sy $od P

tions? (Current supcrcomputer LISP implementations do not use the vector pipeline.)

(9) It may be time to give up the Von Neumann architecture in favor of a new execution

model, if we expect to achieve truly large (radical?) improvements in performance on

symbolic problems. For example, it may be of advantage to employ a new‘control mechan-
ism more adapted to symbolic calculations, e¢.g. replacc the pregram counter with a
unification functional unit. There are a number of iateresting new ideas in this area,
such as the OPS-5 machine, DADO, the FAIM machine of A. Davis at SRI, and the

NON-VON machine.

(10) Issues for faster symbolic processing:

i (A) Architecture of words. Tags are essentiz! for nearly all symbcelic languages. This adds

ti'_ . to memory costs (aa 8-bit tag in addition to a 32-bit word is 2 good ratio).

t»"f‘ (B) Architecture of the memory system in a parallel mackine. (i) How is memory shared?
L

Is it true sharing? Is it mossage-based on some network? (iil) How is cache coherence
done (if at all)? (iii) Lazy evaluation will play a key role in paraliel symbolic languages.
It must be supported by full/empty bits or by the general tagging system, and also by syn-
chronization primitives.

(C) Some operations need to be faster, function-calling in particular. Don‘t make the

super-mini mistake of supporting the wrong function-call primitive.
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another possible solution, used, for example, by the Goodyear MPP.

5. SYSTEM ARCHITECTURE.
The following are statements of individual participaats.

(1) The five most important changes te gct into the next commercially produced super-
computer to affect symbolic computation languages are: tags, garbage coll=ction support,

fast function calls, stacks, user-generic datatypes.

(2) Onc thing that can be done is to identify core capabilitics and build plug-in bardware
modules for them ("augmentations” of systems). Some candidates:
- unification
- pattern matching
- bignum's (arbitrary precision integers)
- bizfcats (arbitrary precision floatiag point numbers)
- integer greatest common divisor
- integer FFT with dynamic primitive root of unity in finite fieid
- garbage collection
It is interesting to contrast this list with what the DARPA rcport ([Age83], p. 45-46) calls
the "special components” of a symbolic processor:
- semantic memory
- signal to symbol transduction
- production rules
- fusion (permitting multiple sources of information to share knowledge)
e H
- infcrencing
- search

(3) Suitability/possibility of very powerful LISP mackines (100X the performance of a
curreat LISP machine for 20X the price). It is noteworthy that the DARPA proposal
([Age83], p. 45) states that an ultimate perfoermance improvement of about 50X curreat

levels can be achieved for a uniprocessor LISP machine.

(4) Is massive parallelism (more than 1000 processors) useful in symbolic computation?

What is the right number of processors?
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(4) Virtual memory will always be needed, even in a single user environment (workspaces
can fll all of physical memory), but real memory is needed where high performance is the

issue.
(5) Must memory organization be completely redesigned to support heap allocation?

(6) The crucial architectural consideration which conventional supercomputer design
ignores is memory. Symbolic computation is very memory intensive, and is (to a large
extent) dependent on garbage collection. Attempts by the PROLOG community to cir-
cumvent garbage collection have been less than successful. There are a number of things
which can be done in bardwzre to facilitate garbage collection, ¢.g. write-back caching,
short use count in the cache, and stack buffers. Concurrent ca-the-fly garbage collection
can be done with software. There are interesting ideas relating to 'trensactionzl memory’

whick necd more work.

(7) A hard issue is: on which side of the cache do we do garbage collection? This has

strong implications for multiple processors urless shared memory is feasible.

(8) Memory organization in the context of parallelism is unclear. It is not clear whether a
sharcd memory or local memories is better; perhaps a blend of the two is best. It is clear
that we want a "uniform®, shared address space to exist, where we can get at everything,

and each processor refers to a given item in the same way.

(9) Current SC language implementations depead heavily ¢z 2 "urniform” shared address
space where we can get ot everything and ecach processor can r:fer to a given item in the
samc way. It is clear that this makes implemcntation simpler and cleaner. However,
some existing parallcl algorithms “"spend” up to half the proceecor “power” reorganizing
memory, moving data around, making copies of data structures, etc. Paralle]l implementa-

tions of SC languages might ascign several processors the tash: of maintaining a *virtual,

uniform address space” ia a distributed memory architecturs. Associative memory is
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(1) Hardware garbage collection (most likely ways are with invicible pointers and refer-

ence counts. Usually a hardware garbage collection can be £2ae¢ in core.)
(2) Use of reference counts
(3) Parallel memory access

(4) Tagged architectures (note that use of tag bits is a property cf the implementation,

rather than of the language. Tagged architectures do not necessarily make things

machine dependent. The Symbolics mackines have given special attention to this

TNV T

irsue).

T (5) Dispatching

(6) Associative memory/processing

(7)  Generic functions (can't implement without runtime type check).
(8) Invisible pointers

(9) Cdr coding

(1¢, Take exceptions in hardware.

The {oilowing are statements of individual participants.

(1v Scrious concern was expressed concerning architectural limitations of some current

mzchines, including some widely used super-minis, that have made implementation of an

SC language unduly difficult. Specifically, in some cases, all bits ¢f a 32-bit word are

uscd, the paging is wrong, and built-in function calling is bad.

3 (2) Tke uscfulness of caches is unclear. Stack buffers work as well or better.

(3) What is the degree of runtime typing required for symbclic computation? Is there
intrinsically 2 sufficiently large amount of run time type dispatchicg to justify hardware
support for tagging or is the use of tag dispatching sufficiently infrequent to allow it to

be done in-line with no substantial performance penalty?




A" SARPaAICa st ot M S ot e gad syt BesoSa St SR k- nod et e d And e il il it Aal G S e e i Eivie MacHiA et Shie See A bon i bt Sea e S S S A M AT S TR

Workshop on Symbolic Computatioa and Supercomputers 12

- Solution of partial diffcrcntial equations, in particular, preprocessing for finite element
computations.

The following are statements of individual participants.

(1) Should there be an effort to interface LISP and FORTRAN? Vendors want to know
what priority this should be given. They need to know in order to decide what products
are warranted. Note that much of the IMSL library of numerical codes has been
translated (via program tra:sformation) from FORTRAN to LISP for inclusion in the
MACSYMA system. It is to be noted that support of scientific computation will, given

recent developments, require support for parallel and vector computaiions.

2) Most people grossly underestimate the amount of symbolic computing inherent in
scientific computation. Even if this symbolic compeoent were a small. fraction of the
total, the cost of classical "FORTRAN-like" computatica will be or is so low with super-
computers that the cost of the symbolic component can beccme cominant in the problem
solving process. People can spend several days (full-time) to obtain by band a symbolic
result that requires a few milliseconds if done at supercomputer speeds. Even using
MACSYMA on a VAX 1V1780; it can require more cffort and cost to obtain a "simple”
symbolic intermediate result than is required to solve a scientific preblem (using it) that

would take scveral hours of “number crunching”.

4. MEMORY.

The primary limits to the performance of a symbolic computation environment arc the
amount, speed, case of access to, and random access to, memory. We would like to have
as much memory as possible, with as much of it physical and as little of it virtuz! as possi-

ble.

The following are some memory featurss to be considersd as potentizl near-term

performance improvements. The number of us in favor of each cae was variable.
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computation community has not yet acknowledged the overriding need for software por-
tability. We should be concerned about the tradeoff bstween the limitations needed for

language portability, and the thwarted creativity that may thercby result. It may be that

any of a number of "modern” symbolic languages are perfectly adequate for the near and
intermediate future (410 years). The scarch for language perfection should not be
allowed to become a barrier to the main geal: to provide substartial symbolic facilities to 1
the broad spectrum of computer users, especially those in large-scale scientific computa-

tion.

B ettt

(13) Can we get super-optimizing compilers combined with support for program rewriting

"

to adapt a program to a processor? This might allow a processor to exploit “conventional

techniques” (e.g. vectors) to get parallelism and psrformance.

(14) We might like to have a compiler advise us on parallelism for applicative languages
like PROLOG. For more imperative languages like LISP, we might allow the program-

mer to specify parallelism.

3a. Synibollc-numerlcal inter{ace.

We agrce that symbolic computation languages should be able to support scrious numeri-
cal computation. There should not be a barrier between the two types of computation in
2 given environment. Some existing LISP compilers (e.g. MACLIED?) generate good code

for numerical computation, demonstrating that it is possible.

The following cxamples illustrate that both sorts of computing may be needed in the

same problem. 4

f‘ - Visual analysis of rewiote sensing data or electron microscopy clides by Bartels at the
v University of Arizosa and Goio at Tokyo University.
b - Motion planning for robots by Moravec at Carnegie-Mellon Ugiversity and Lozano-Peres
at MIT.
F - Solution of equations in artificial satellite thecry [Dep].

- Solution of transfer functions in optics [Got77).
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show- grcat promise for transformation-based optimizatiors. Other techniques such as
invariant analysis and specification will be important in the detection of parallelism in

symbolic applications.

(5) Automatic introduction of parallelism by the compiler is curreatly extremely difficult

(but sec {Mar80]).

(6) While protecting the large investment in existing LISP code, care in language design
(c.g. first-class functions and continuations) can lead to improved algorithms. This is espe-
cially important in the convergence of LISP and PROLOG, wkich may be achieved usiag
continuations.

(7) Languages must support multiple levels of programming. Ye should be able to nor-
maily work at very high levels, but then become very machine specific whea performance
is crucial.

(8) A language for symbolic computation should have a nice algebra (LISP doesn’t, PRO-
LOG docs). This is not only for aesthetic reasons, but to facilitate automatic program

transformation for more efficient implementatioa.

(9) Wha: optimizations may be used to provide first-class functional and control objects

efficiently when higher order functions are rarely used? (see e.g. [Pad€3]).

(10) Despite the fact that the design of today's supercomputers hzs been guided by the
goal cf large-scale numerical computation, it is importzat to implement LISP and other
symbolic computation langueges on them. Good performance ca today's architectures

can be achieved, and a lot is yet to be learned for the benefit of future zrchitectures.

(11) Wkat is the future of "smart” compilation of symbolic computation languages vs. spe-

cizl hardware for more "interpretive” execution?

(12) A great deal of attention is being given to the diffcrences in power, convenience, eic.

of "LISP-like” programming languages; much more than is appropriate. The symbolic
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8. APPENDIX: MAILING ADDRESSES OF PARTICIPANTS.

John Aldag
Applications Department
Cray Research
1440 Northland Drive
Mendota Heights, Minnesota 55120

Wayne Anderson
Group C-10
Mail Stop B296
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Dennis Arnon
Computer Science Department
Purduc University
West Lafayctte, Indiana 47907

Bobby F. Caviness
University of Delaware
Department of Computer and Information Sciences
103 Smith Hall
Newark, Delaware 19716

Jagdish Chandra
Army Research Office
P.O. Box 12211
Research Triangle Park, North Carolina 27709

Elizabeth Cuthill
David Taylor Naval Sh:p Research and Development Center
Code 1805
Bethesda, Maryland 20084

Alviz Despain
University of California
Computer Science Division
Department of EECS
505 Evans Hall
Berkeley, California 94720

Robert Douglass
Group C-10
Mail Stop B296
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

John Fitch
School of Mathematics
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University of Bath
ENGLAND

Daniel Friedman
Ccmputer Science Department
Indiana University
Lindley Hall 101
Bloomiagton, Indiana 47405

Richard Gabriel
Computer Science Department
Stanford University
Staaford, California 94305

. Jeffrey Greif
; Infercnce Corporation
$300 W, Certury Blvd.
. Fifth Floor
= Los Angeles, California 90045

Martin Griss
Computation Research Center
3U3
Hewlett-Packard
1501 Page Mill Road
Palo Alto, California 94304

Malcolm Harrison
New York University
251 Mercer Street
New York, New York 10012

Christopher Haynes
Computer Science Department
Indiana Uriversity
Lindicy Hall 101
Bioomington, Indiana 47405

Robert Kessler
University of Utah
Depariment of Computer Science
3160 Merrill Engineering Building
Selt L2ke City, Utah 84112

Wayne Matson
Svmbolics, Inc.
243 Vassar Street
Cambridge, Massachusetts 02139

Donald Oxley
Texas Instruments
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- P.O. Box 226015
‘ Mail Station 238
Dalias, Texas 75266

John Rice
Computer Science Department
Purdue University
West Lafayette, Indiana 47907

John Smit
Goodyear Aerospace Corporation :
D920/G3 N
1210 Masillon Road
Akron, Ohio 44315

A‘ William Stockwell g

Control Data Corporation
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- Post Office Box 0 -
Minncapolis, Minnesota 55440 ]

Pau! S. Wang
Kent State University
Department of Mathematical Sciences
Kent, Ohio 44242
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